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Abstract. We show that every translation invariant valence bond state on a one-dimensional 
quantum spin chain arises as the unique ground state of a c e m i n  family of finite-range 
interactions. For each interaction in this family we show the existence of a non-zero spectral 
gap above the ground stale energy. A special example of this structure is a state recently 
studied by AAleck el 01. For Ihe Hamiltonian studied by these authors we can estimate the 
gap, and prove that it lies between 1/3 and 10127. 

It is well known that, even for nearest-neighbour interactions on a one-dimensional 
quantum spin chain, determining ground state properties such as degeneracy, symmetry 
breaking, exponential clustering, existence of a gap, etc, is a very hard problem. Some 
progress on the uniqueness problem was made recently in [ I ] .  We are concerned here 
with an extension of recent work [2] which demonstrated for a specific nearest- 
neighbour Hamiltonian of a spin-1 chain the uniqueness of the ground state, the 
exponential decay of correlations, and the existence of a non-zero spectral gap. 
Estimates for the gap in this and some other models have also been given in [3]. 
Starting from this example, we will develop an abstract version of ‘valence bond solid’ 
(or VBS) states [4, 51. We then show that for each VBS state there is a family of 
Hamiltonians, for which this state is a ground state with non-zero spectral gap. The 
example of [2] falls into this class, and we obtain a bound 3 / 1 0 S  y C  10/27 for the 
gap y in this case. The techniques of [2] make explicit use of the rotation invariance 
of the ground state. In contrast, no such symmetry is needed in our approach so that, 
e.g., the state of [Z] is embedded into a 19-dimensional manifold of less symmetrical 
states, all of which are ground states of perturbations of the Hamiltonian in [2]. 
Although a general perturbation will destroy the VBS nature of the Hamiltonian and 
its ground state, this shows that YES ground states are a much less singular occurrence 
than was apparent from the previous literature. A more extensive study of generalized 
VBS states on quantum spin chains was undertaken in [6,7], where detailed proof of 
our assertions in this letter can also be found. 

The state considered in [2] is the unique ground state of the Hamiltonian 

H = x  {fSj.S,+, +~(S,.S,+,)2+f) (1) 
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where S; denotes the spin operators of a spin-1 at site i. The expression in braces is 
nothing but the projection onto the spin-2 subspace in the decomposition of the tensor 
product of the two spin-I representations at sites i and ( i +  1). The state is constructed 
as follows. The spin-1 state space (C') at any site i is considered as the triplet subspace 
in a pair of two spin-f degrees of freedom. Let us call these two spin-f systems the 
right and left radical at site i. The valence bond is formed by combining the right 
radical at site i with the left radical at site ( i + l ) ,  and specifying a state 'p for this 
pair. Since the ground state is to be translation invariant, 'p will be the same for every 
bond. In the example it is just the singlet state for the composition of the two spin-f 
systems. We thus have an auxiliary chain, whose sites correspond to the bonds of the 
original spin-1 chain, and we have a state vector for any finite segment of this auxiliary 
chain, which is just the product of the 'p-vectors for each bond. Note that an observable, 
living at  one site of the original chain, can also be considered as an observable of this 
auxiliary chain: any operator on @' (which we identified with the triplet subspace of 
the two spin-f radicals) is extended to the whole product space C 2 0 C 2  of the radicals 
by defining it as zero on the singlet state. Thereby, such an observable becomes an 
observable of the auxiliary chain, and we can compute its expectation value, and the 
expectation values of any product of such observables, in the product state built from 
'p. By definition, these are the expectations of the valence bond state on the original 
spin-1 chain. To summarize, a valence bond state is a restriction of a product state, 
after the latter has been shifted by half a lattice step. 

The generalization of this scheme is now straightforward. At each site of the chain, 
labelled by i E {. . . , - l,O, 1, .  . .} we consider a quantum system described in a d -  
dimensional Hilbert space. Thus A, E Ad will denote a 1-particle observable at the site 
i of the chain, where we use A, to denote the complex d x d-matrices. We replace 

C k  with finite k. The state ofthe bonds will be given by a unit vector 'p E C k @ C X .  The 
next ingredient is the identification of observables A, E A, with observables of the 
auxiliary chain. Here we allow some more freedom than just an identification of 
with a subspace of C k @ C k :  this identification will be of the form Ai U W*AW, with 
a fixed linear operator W: Ck@oCk + C". The expectation of an observable A. 0.. .@A, 
i ivirig ~ i i  siies ii, . . . , iii if i  iiie ~ d e f i i e  boiid ~Tate is then 

the spin-; in by gn &iiraiY yuanium syjieiii -wiih Ei]befi 

,:..:-. 

(A,@. , ,OAm)=(@n,,l(UO W*A.WO 0 W*A,W@U)@,,,) (2) 

where the scalar product on the right is taken in the 2 ( m  - n +2)-fold tensor product 
of C k  with itself, and Qnm ='pQqQ. ..@'p with ( m - n + 2 )  factors. With a suitable 
normalization of W this equation clearly defines a state on the set of observables on 
the specified sites, i.e. there is a density matrix prim on the ( n - m +  1)-fold tensor 
product of C" with itself such that 

(A ,@.  . .OA,,)=tr(p,,A,@ (3) 

Apart from the normalization condition (U)= 1, a state on the chain also has to satisfy 
the consistency conditions 

@A,? @U,7, , )  = (A, 0. . .@A,?) 

where l i  denotes the unit operator at site i. In terms of 'p and W these are easily seen 
to be equivalent to 

(4) 
((~09 I(UO W* W O  B)rpO?)= (P I ( ~ @ B ) P )  

('p@'p I (AO W*WOU)'pOc)=(?l(A@U)'p) 
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for arbitrary A, B E  Ah. With this condition our construction of generalized valence 
bond states is complete. Note that no group representations or symmetry conditions 
were necessary. However, if both C* and C' carry an irreducible representation of 
SU(2) of spin ( d  - 1)/2 and ( k  - l)/2, respectively, it is easy to get a rotation invariant 
state ( . )  from this construction: we simply take 'p as the unique rotation invariant 
vector in C'OC', and take W a s  an intertwining operator from C'OC' to Cd. Such 
an operator exists iff d is odd and ( d - l ) / Z s ( k - l ) ,  i.e. d s ( Z k - l ) ,  in which case 
W is unique up  to a factor. It is easy to see that equation (4) can then be satisfied by 
a suitable choice of this factor. Both 'p and W can be written out explicitly in terms 
of Clebsch-Gordan coefficients. The state of [Z] is the simplest non-trivial case of this 
( d  = 3, k = 2); the other states have been studied in [7]. 

In the thepry of valence bond states developed in [6] a central role is played by 
the operator E: Y, + Ak defined by 

( X / Q B ) X ? = ( X O P I (  W* W O B ) X W ' ~ P ) .  ( 5 )  

The first consistency condition (4) can then be stated as i(n)=1. 6 is analogous to a 
transfer matrix. Its powers determine all the correlation functions of the VBS state, 
which hence decay exponentially like the powers of the eigenvalues of E. It is shown 
in [6] that the translation symmetry is unbroken in the VBS state, i.e. that the state 
allows no convex decomposition into periodic states, if and only i,f 1 is the only 
eigenvector of with an eigenvalue of modulus 1, or equivalently, if E" converges to 
the eigenprojection of 1 as n + m. We shall assume this condition from now on. 

For every n < m and any basis (xi}!=, c C' the equation 

(10 WB w... @ n t r p @ r p @  ... o '~=cxAx+~,  ,..., ml,c,j)@x, (6) 

uniquely defines a set of k2 vectors I/I~......~~.~,~ E 0'"-'""' C . We shall denote the linear 
span of these vectors by 9,,,.,m). From the expressions (2), (3) for the local expectations 
it is then immediately clear that the local density matrix porn will be supported by 
%(n,...,,,), i.e. that the eigenvectors of prim with positive eigenvalues must be contained 
in 9,n,....ml. We shall therefore call this space the space of 'valence bond vectors' over 

and m. There is in fact a finite 'interaction length' r given by the smallest interval 
11,. . . , r )  such that 9,s %, ,,...,, has exactly dimension k 2 .  

A crucial property of the valence bond vectors, which is closely related to the 
exponential clustering of the VBS state, is that for sufficiently long chains any valence 
bond vector represents the VBS state. More precisely, for any finite segment In,. . . , m} 
and E > 0 we can find some L such that 

i.i 

the Si!.S ", . . . , E. NO!C !hat !hk space hzs &mensle!! a! =Os! k2  i.n.dq?e.n.dc"?!y of n 

I ( Y I A Y ) - ( A ) ~  6 E II A 11 (7) 

where t is any unit vector in V(n-L.....m+L), and A is an observable living on the segment 
{ n, , , , , m}. It  immediately follows from this property that any state, whose local density 
matrices are supported by the subspaces %,m,...,nl must coincide with the VBS state. In 
other wnrds, this state is uniquely characterized by the property that any observable 
A on a segment In., , ., m} which vanishes on 8, ",_.., ,,,) has zero expectation. 

The second fundamental property of VBS vectors is that if a vector has VBS form 
on two segments with sufficiently large overlap, then it is a VBS vector on the union 
of the segments. More precisely, if n > r the conditions Y 0 and Y E  9" OCd 
imply Y E 9,,+,. The proof relies on comparing the two expansions of '? in terms of 
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VBS vectors. By induction we get from this the stronger result 
m-n 

gm= n ~ Q ~ ~ Y I ~ , O Q I ~ - " - C )  c d (8) i=o 

for all m 
Another way to express the properties (7) and (8) of VBS vectors is to turn the VBS 

state into a ground state of a translation invariant finite range Hamiltonian. Indeed, 
the VBS state ( ) is clearly a ground state of 

H I  Z hi; ,..., ~+II  

n > r. 

i t2  

as soon as h{,,...,j+ll E @'+'U, is non-negative and has support in the orthogonal comple- 
ment of Furthermore, if we choose I larger than the interaction length r and 
h((, . , . , ;+l,  strictly positive on %+,, H will have the VBS state ( )  as unique ground state 
by virtue of the above result. A Hamiltonian with this property will be called a VBS 

Hamiltonian for the VBS state ( ). There are many such Hamiltonians associated with 
each VBS state, varying also in the range 1. However, restricting to the translation 
invariant case, where hljv. . ,j+ll= h, is independent of i, we find that any two VBS 

Hamiltonians H, H', defined by h,, hi. are equivalent in the following sense: if we 
define the local Hamiltonians for m 2 n + l  by H ,  ",..., m t  =E;=, h,j  ,..., r + , t ,  then there are 
positive constants c+ such that whenever m - n 2 I, I' we have 

m - l  

c - H I ~  ..., ~ I G  H i ,  ,.... m t G  c+HI, ,..., m t .  (9) 

This follows easily from translation invariance, and from the fact that the operators 
in this inequality have the same null spaces. 

The ground state energy gap y of the Hamiltonian H is defined as the largest y 
such that for all (local) observables X: 

(X*[H, XI)> Y{(X*X)-I(X)/~}. (10) 

Since we are considering states for which the positive operator H{n,...,ml has zero 
expectation, we may omit the commutator in this definition, and have to show instead 
that 

(X*H~n, . . . ,mtX)~  Y{W*X)- I(X)12} 

whenever { n ,  . . . , m }  is much larger than the area of localization of X. Our strategy 
for proving this inequality for some strictly positive y is the following. First of all, 
neither the existence of the gap, nor even the value of y changes when we do not take 
Ad as the basic one-site observable algebra, but group together runs of p consecutive 
sites to obtain a chain with 'one-site' observable algebra OpAd I Ad<,. This grouping 
does not change the VBS property of the state under consideration. If we choose p 
larger than I, we may now consider the given Hamiltonian as a nearest-neighbour 
interaction kl,,21E Ad~OAdi. with 

P-' P 2 p - r  

i = ,  i=p- , t ,  i - p t ,  
k{,.2tEf Z h , ;  ,... ;+,I+ 1 hi; ..... i + r r + f  h{i ,.... ; + I ) .  

This operator is clearly positive, and its support is precisely the complement of %,,. 
It therefore defines a nearest-neighbour VBS Hamiltonian for the same VBS state as the 
original Hamiltonian. It is clear from the equivalence (9) of VBS Hamiltonians that 
the interaction k{l,2, defines a Hamiltonian with gap, if and only if any other operator 
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with the same support has this property. The most convenient choice is to replace k(l.21 
by its support projection, i.e. by the projection onto the orthogonal complement of 
g2,,. Let us denote this projection by k;1.2t. Then a crucial step in the proof is to use 
the cluster properties of VBS states to show that, provided p was chosen large enough, 
ki,,2t and k[z.lt nearly commute, and 

k;1.2tki2.)t+ki2.)tkii.2t a (-&p)(kii.~~+ki2,3)) 

for some &,,)>O, which becomes small for large p. From this, and the fact that kij,i+lt 
and k[j,j+l, commute for l i - j la2. it is easy to see that 

( H i ,  ,.... n t Y 3  (1-2~~)Hji, . . .nt .  (11) 

This means that Hi,,.. . ,*t has a spectral gap at least ( I - ~ E ~ ) ,  uniformly in n, which 
implies the desired result. We mention that the idea of establishing a gap by proving 
an inequality like (1  1) for the square of the local Hamiltonian has also been used by 
Knabe [3]. 

Now consider again the state on the spin-1 chain of our first example. The interaction 
length of this state turns out to be r = 2, which is expected, because k2 = 4 vectors in 
a space of dimension d' = 32 are generically independent. TI2 is the four-dimensional 
subspace of C3@C3 that carries the spin-0 and spin-I subrepresentations in the product 
of two spin-I representations. In this case we have, moreover, that 9, = (B,@C3nC3@ 
92. This means that, while the general structure outlined above guarantees only the 
existence of a next-nearest-neighbour VBS Hamiltonian, there is already a nearest- 
neighbour Hamiltonian which has this VBS state as  its unique ground state. For example, 
we can take the Hamiltonian ( l ) ,  where this nearest-neighbour interaction is the 
orthogonal projection P,> on the orthogonal complement of g2. The simplest estimate 
for the gap of this Hamiltonian using the above argument would be based on the 
inequality: 

PI2P21+ P2IP,2* - 0 1 2 +  P23). 

Unfortunately, the constant E = 1/2 (which is optimal) is not good enough to lead to 
a non-zero lower bound for the gap. We should therefore regroup the chain as outlined 
above, which considerably complicates explicit computations. A careful analysis based 
on the explicit form of the state leads to a lower bound of 3/10 for the gap which is 
reasonably close to the easily obtained upper bound of 10127 (see e.g. [SI). 

Part of this work was completed while M F  was visiting the Institute for Advanced 
Studies in Dublin. BN acknowledges support from the Fondo Nacional de Desarollo 
Cientifico y Tecnol6gico (Chile, Fondecyt project NI 90-1156). RFW would like to 
thank the Alexander von Humboldt-Foundation, and the Deutsche Forschungsgemein- 
schaft for supporting him with fellowships. 
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